Infinitely many conservation laws for the discrete KdV equation
نویسندگان
چکیده
In [28] Rasin and Hydon suggested a way to construct an infinite number of conservation laws for the discrete KdV equation (dKdV), by repeated application of a certain symmetry to a known conservation law. It was not decided, however, whether the resulting conservation laws were distinct and nontrivial. In this paper we obtain the following results: (1) We give an alternative method to construct an infinite number of conservation laws using a discrete version of the Gardner transformation. (2) We give a direct proof that the conservation laws obtained in [28] are indeed distinct and nontrivial. (3) We consider a continuum limit in which the dKdV equation becomes a first-order eikonal equation. In this limit the two sets of conservation laws become the same, and are evidently distinct and nontrivial. This proves the nontriviality of the conservation laws constructed by the Gardner method, and gives an alternate proof of the nontriviality of the conservation laws constructed by the method of [28].
منابع مشابه
KdV and Almost Conservation Laws
In this article we illustrate a new method to extend local wellposedness results for dispersive equations to global ones. The main ingredient of this method is the definition of a family of what we call almost conservation laws. In particular we analyze the Korteweg-de Vries initial value problem and we illustrate in general terms how the “algorithm” that we use to formally generate almost cons...
متن کاملDiscrete zero curvature representations and infinitely many conservation laws for several 2+1 dimensional lattice hierarchies
In this article, several 2+1 dimensional lattice hierarchies proposed by Blaszak and Szum [J. Math. Phys. 42, 225(2001)] are further investigated. We first describe their discrete zero curvature representations. Then, by means of solving the corresponding discrete spectral equation, we demonstrate the existence of infinitely many conservation laws for them and obtain the corresponding conserved...
متن کاملVariational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves
The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...
متن کاملOrder reduction and μ-conservation law for the non-isospectral KdV type equation a with variable-coefficients
The goal of this paper is to calculate of order reduction of the KdV typeequation and the non-isospectral KdV type equation using the μ-symmetrymethod. Moreover we obtain μ-conservation law of the non-isospectral KdVtype equation using the variational problem method.
متن کاملTwo New Integrable Lattice Hierarchies Associated With A Discrete Schrödinger Nonisospectral Problem and Their Infinitely Many Conservation Laws
In this article, by means of using discrete zero curvature representation and constructing opportune time evolution problems, two new discrete integrable lattice hierarchies with ndependent coefficients are proposed, which related to a new discrete Schrödinger nonisospectral operator equation. The relation of the two new lattice hierarchies with the Volterra hierarchy is discussed. It has been ...
متن کامل